10,452 research outputs found

    The TLR2/6 ligand PAM2CSK4 is a Th2 polarizing adjuvant in Leishmania major and Brugia malayi murine vaccine models.

    Get PDF
    Toll-like receptors (TLRs) play an important role in the innate and adaptive immune responses to pathogens, and are the target of new vaccine adjuvants. TLR2 plays a role in parasite recognition and activation of immune responses during cutaneous leishmaniasis infection, suggesting that TLR2 could be targeted by adjuvants for use in Leishmania vaccines. We therefore explored using Pam2CSK4 (Pam2) and Pam3CSK4 (Pam3) lipopeptide adjuvants, which activate TLR2/6 and TLR2/1 heterodimers respectively, in vaccine models for parasitic infections.The use of lipopeptide adjuvants was explored using two vaccine models. For cutaneous leishmaniasis, the lipopeptide adjuvants Pam2 and Pam3 were compared to that of the Th1-driving double-stranded DNA TLR9 agonist CpG for their ability to improve the efficacy of the autoclaved Leishmania major (ALM) vaccine to protect against L. major infection. The ability of Pam2 to enhance the efficacy of a soluble Brugia malayi microfilariae extract (BmMfE) vaccine to protect against filarial infection was also assessed in a peritoneal infection model of B. malayi filariasis. Parasite antigen-specific cellular and humoral immune responses were assessed post-challenge.The use of lipopeptides in ALM-containing vaccines did not provide any protection upon infection with L. major, and Pam2 exacerbated the disease severity in vaccinated mice post-challenge. Pam2, and to a lesser extent Pam3, were able to elevate antigen-specific immune responses post-challenge in this model, but these responses displayed a skewed Th2 phenotype as characterised by elevated levels of IgG1. In the B. malayi vaccine model, the use of Pam2 as an adjuvant with BmMfE induced significant protective immunity to the same level as inclusion of an Alum adjuvant. Here, both Pam2 and Alum were found to enhance antigen-specific antibody production post-challenge, and Pam2 significantly elevated levels of antigen-specific IL-4, IL-5 and IL-13 produced by splenocytes.These data indicate that TLR2/6-targeting ligands could be considered as adjuvants for vaccines that require robust Th2 and/or antibody-dependent immunity

    Macrophage transactivation for chemokine production identified as a negative regulator of granulomatous inflammation using agent-based modeling

    Get PDF
    Cellular activation in trans by interferons, cytokines and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and / or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation

    Imaging African trypanosomes

    Get PDF
    Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the blood-sucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as sleeping sickness. In late-stage infection, trypanosomes cross the blood–brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late-stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox–eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late-stage HAT drug candidates. Here, we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilized cells in culture to whole-animal imaging, are providing insight into T. brucei biology, parasite-host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies

    Parasite excretory-secretory products and their effects on metabolic syndrome

    Get PDF
    Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies

    Impact of tumor necrosis factor receptor p55 deficiency in susceptibility of C57BL/6 mice to infection with Leishmania (Leishmania) amazonensis

    Get PDF
    Tumor necrosis factor (TNF) is involved in host resistance to several intracellular pathogens. Although the critical role of TNF receptor (TNFR)p55 in Leishmania (Leishmania) major infection has been demonstrated, the impact of TNFRp55 deficiency on L. (L.) amazonensis infection has not been explored. L. (L.) amazonensis-infected TNFRp55−/− mice failed to resolve lesions, whereas C57BL/6 wild-type mice completely healed. The susceptibility of the TNFRp55−/− mice was characterized by higher lesion size and histopathological damage in comparison with the wild-type mice. A marked increased of the splenic index was observed in the TNFRp55−/− mice after 15 weeks infection. These results show that in the absence of TNFRp55, L. (L.) amazonensis-infected knockout mice fail to resolve lesions, whereas wild-type mice completely heal.Fil: Cargnelutti, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Salomón, María Cristina. Universidad Nacional de Cuyo; ArgentinaFil: Celedon, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Cuello Carrión, Fernando Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Gea, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Di Genaro, María Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Scodeller, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentin

    A new landscape of host–protozoa interactions involving the extracellular vesicles world

    Get PDF
    This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press 2018Extracellular vesicles (EVs) are released by a wide number of cells including blood cells, immune system cells, tumour cells, adult and embryonic stem cells. EVs are a heterogeneous group of vesicles (~30–1000 nm) including microvesicles and exosomes. The physiological release of EVs represents a normal state of the cell, raising a metabolic equilibrium between catabolic and anabolic processes. Moreover, when the cells are submitted to stress with different inducers or in pathological situations (malignancies, chronic diseases, infectious diseases.), they respond with an intense and dynamic release of EVs. The EVs released from stimulated cells vs those that are released constitutively may themselves differ, both physically and in their cargo. EVs contain protein, lipids, nucleic acids and biomolecules that can alter cell phenotypes or modulate neighbouring cells. In this review, we have summarized findings involving EVs in certain protozoan diseases. We have commented on strategies to study the communicative roles of EVs during host–pathogen interaction and hypothesized on the use of EVs for diagnostic, preventative and therapeutic purposes in infectious diseases. This kind of communication could modulate the innate immune system and reformulate concepts in parasitism. Moreover, the information provided within EVs could produce alternatives in translational medicine.Peer reviewedFinal Accepted Versio

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis

    Get PDF
    Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human primates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination. In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 μg (high dose) or 100 μg (low dose) DNA prime (day 0) and 1 × 108 pfu MVA boost (day 28) was shown to be safe and showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the type-1 pro-inflammatory cytokine IFN-γ than controls in whole blood assays (WBA) stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases in IFN-γ in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls demonstrating an absence of Th2/Treg response, as expected in the absence of in vivo restimulation or natural/experimental challenge with Leishmania. These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase cellular immune responses, consistent with superior potential for protective vaccine immunogenicity of DNA/MVA TRYP over LACK

    Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid).

    No full text
    A noncovalent complex of amphotericin B (AmB) and poly(α-glutamic acid) (PGA) was prepared to develop a safe and stable formulation for the treatment of leishmaniasis. The loading of AmB in the complex was in the range of ∼20-50%. AmB was in a highly aggregated state with an aggregation ratio often above 2.0. This complex (AmB-PGA) was shown to be stable and to have reduced toxicity to human red blood cells and KB cells compared to the parent compound; cell viability was not affected at an AmB concentration as high as 50 and 200 μg/mL respectively. This AmB-PGA complex retained AmB activity against intracellular Leishmania major amastigotes in the differentiated THP-1 cells with an EC50 of 0.07 ± 0.03-0.08 ± 0.01 μg/mL, which is similar to Fungizone (EC50 of 0.06 ± 0.01 μg/mL). The in vitro antileishmanial activity of the complex against Leishmania donovani was retained after storage at 37 °C for 7 days in the form of a solution (EC50 of 0.27 ± 0.03 to 0.35 ± 0.04 μg/mL) and for 30 days as a solid (EC50 of 0.41 ± 0.07 to 0.63 ± 0.25 μg/mL). These encouraging results indicate that the AmB-PGA complex has the potential for further development
    • …
    corecore